Integrated Machine Learning and Mathematical Optimization

For the past several years, ML has exploded in popularity, while the excitement for MO has mostly plateaued. Why this has occurred is very much up for debate. One might surmise that ML is simply a better tool than MO, and therefore it replaced it in terms of popularity. This, however, is wrong-headed. ML and MO are typically used to solve very different problems. One might also think that problems MO has historically solved no longer exist.

By Sel Gerosa, ago

Artificial Intelligent System for Human Health Support

Having an autonomous artificial intelligence (AI) system that can monitor individuals via facial mood recognition, vocal tonality analysis, proximity to one another, performance, biosensors, surveys, and more, and predict conflict before it is problematic could improve a unit’s cohesion and performance in missions both in space and in isolated environments on Earth.

By Sel Gerosa, ago

Improving eCommerce Internet Search with AI

Filtering search results is an essential part of any eCommerce website. Can you remember the last time you shopped online without filtering on product attributes such as color, size, brand, etc. Additionally, rich product attributes are critical to Google SEO which drives traffic and website sales.

By Sel Gerosa, ago

A Review of Open-Source Annotation Tools for Computer Vision

We decided to approach this problem as a similarity learning modeling effort. We used convolutional neural networks to train a model that takes an image or video as input and outputs a vector representation of the input, such that similar inputs will be close to each other in the vector space. The vector learning is driven by a triplet loss function.

By Drew Clancy, ago

Similarity Learning for Image Geolocation

We decided to approach this problem as a similarity learning modeling effort. We used convolutional neural networks to train a model that takes an image or video as input and outputs a vector representation of the input, such that similar inputs will be close to each other in the vector space. The vector learning is driven by a triplet loss function.

By Drew Clancy, ago

Few Shot Learning for Computer Vision

Object detection in video has become a matter of routine, however, expanding these models to detect an object of your choosing requires many thousands, if not tens of thousands, of training examples. Few shot learners seek to make this process cheaper and easier by learning to detect new objects with only a small handful of examples (i.e. 1-30).

By Drew Clancy, ago
Privacy Policy
Cookie Policy