
Mosaic Data Science White Paper 1

White paper examining how to use MLOps for monitoring
production ML code

Data Science White Paper

Production Machine Learning
Auditing using MLOps

Business AnalyticsArtificial IntelligenceMachine Learning

Mosaic data scientists collaborate
with customers, digging deep into
the data to inform design and
deployment of custom ML tools
that make a difference.

Mosaic integrates powerful
AI tools into clients’ existing
technology stack to solve
complex business challenges

Mosaic helps corporations
of all shapes and sizes take
advantage of their data,
transforming their decision-
making processes.

info@mosaicdatascience.com

http://mosaicdatascience.com/

mailto:info@mosaicdatascience.com
http://mosaicdatascience.com/

Successfully developing machine learning tools to provide value
in a business environment requires much more than algorithmic
knowledge and tuning. Machine learning cannot provide value in a
vacuum. A simple heuristic deployed in the right place can provide
more value than a complex model effectively “mothballed” in an
offline setting. At Mosaic Data Science, we take a holistic approach
to developing machine learning-enabled solutions. This involves
focusing on how the model will ultimately provide value to the
business as much or sometimes more than focusing on building
the most accurate model.

This focus on delivering and integrating machine learning models
is often referred to as MLOps, short for machine learning
operations, extending the practice of DevOps1 in software
development. While there are some adjustments that must be
made in that extension, we believe that many of the tenets and
justifications used in DevOps readily apply to MLOps.

In this white paper, we will outline the development of a machine
learning application using MLOps practices. We focus on two main
features:

1. Continuous model delivery, and

2. Production model monitoring and alerting.

We will highlight how these practices reduce operational
complexity and time to value, allow for more agile development,
and integrate quality assurance into the deployment process. This
paper will explore how MLOps provides natural opportunities
for fair and ethical machine learning practices that can be
implemented, demonstrated, and even audited if necessary.

BUSINESS OBJECTIVES

For the purposes of this white paper, we simulated a
business use case that required an ML application. Our
simulated client is a financial services company that
provides lending services. Providing this service typically
involves reviewing applicants’ financial history and the
prospective loan details (e.g., amount, purpose, terms),
then using that information to decide on whether to grant
loans to each individual applicant. Ultimately, applicants
who receive loans may or may not pay the loans back.
The objective, of course, is to increase overall profits by
reducing instances where the loan is not repaid. The loan
approval process is typically manual and based upon
human heuristics or other methods.

BUSINESS PROBLEM | INCREASE IN
RATE OF UNPAID LOANS

In this demonstration scenario, an unsatisfactory fraction
of approved loans are not being repaid, so the lender
would like to add a second layer of targeted review of
approved but relatively high-risk loans before they are
finalized. Having provided lending services for some
time, the business has accrued a large data set of loans
they have approved, creditor application details, and the
ultimate outcome of the loan.

The business wishes to develop a machine learning
system to determine which loans are high-risk and thus
selected for a secondary review. This system will be used

Mosaic Data Science White Paper 2

https://devops.com/

 Loan process review with machine learning

to review all approved loans, and its prediction will be used to
automatically approve applications that are predicted to be low
risk. All applications that are predicted to be high-risk will undergo
a secondary manual review.

In financial services and other high-stakes settings, issues
of fairness and justice are of particular interest in general.
These services are under scrutiny by the public and
regulators, and the same scrutiny is applied to ML models
in this space. The business in the demonstration is keen
to develop and deploy a “fair” ML model that reflects
its corporate culture and values and will stand up to
potential government regulations and associated audits.

Fairness is multifaceted, highly contextual, and use-
case specific. It may not be possible to simultaneously
accomplish all relevant notions of fairness. Furthermore,
increases in fairness may be offset by decreases in
predictive accuracy or other quality metrics, so priorities
must be evaluated, and value judgments are typically
required. Across the board, the fairness of an ML model is
not proven, but rather constantly measured, with scrutiny
and adjustments provided based on measurement
results. We will demonstrate how this constant
measurement can naturally be built into an MLOps
pipeline.

ETHICAL ML MODEL FRAMEWORKS

After reviewing the business problem and proposed
solution, we recommended that the business evaluate
the model using the Equal Opportunity2 framework of
fairness. This popular and well-studied notion of fairness
focuses on assessing whether the model is less accurate
when making predictions for any protected sub-group
than for other sub-groups. For this assessment, Mosaic

The business anticipates that the secondary review of approved
but predicted high-risk loans will be conducted at a relatively high
level and will lead to most of those loans being rejected, largely
because the marginal cost associated with approving a loan that
ends up failing is generally much higher than the marginal cost
of failing to approve a loan that would end up being repaid. This
situation makes the business much more tolerant of false-positive
predictions, i.e., an incorrect classification of a loan as high-risk,
than they are of false-negative predictions, i.e., an incorrect
classification of a loan as low-risk. In fact, data science efforts on
this business case have identified a 5:1 false-negative to false-
positive cost ratio for the ML model. This cost ratio enables us
to select a low- vs. high-risk threshold on the model’s predicted
probability output.

Mosaic Data Science White Paper 3

https://arxiv.org/abs/1610.02413

recommended using the false-positive rate as the key error metric.
This is because the positive prediction (a loan classified as high-
risk) is punitive to the applicant. If the model incorrectly classifies
an applicant’s loan as high-risk, it will likely result in an unfair
rejection of the applicant’s loan. In the demonstration scenario,
the business is mostly concerned with being fair with respect to
applicant ethnicity.

To evaluate our loan approval ML model using the Equal
Opportunity framework of fairness, we need to compare the false-
positive rates for each ethnic group. We do so by calculating the
absolute differences between all the groups’ false-positive rates.
If the largest of those differences is too far from zero, then the
model fails to achieve Equal Opportunity fairness, a situation that
merits further attention and potential intervention.

Assessing equal opportunity using false positive rates

Fortunately, there is a relatively straightforward
way to adjust a trained ML model to ensure
that it satisfies the Equal Opportunity notion of
fairness. We can ensure that each group achieves
the same false-positive rate by adjusting the
low- vs. high-risk predicted probability threshold
per ethnic group to hit the specified rate. For
instance, if loans from a certain ethnic group
are being flagged as high-risk more often than
loans from other ethnic groups, we can change
the probability threshold in the model for the
particular ethnic group, adjusting it until we
reach equivalent false-positive rates. We then
search over candidate false-positive rates to
find the one that minimizes the 5:1 cost ratio
described earlier. This approach maximizes the
lender’s profits within a fairness constraint. The
figure below demonstrates how setting group-
based probability thresholds can ensure uniform
false-positive rates.

This graphic displays each ethnic group’s ROC curve. The
legend denotes the selected probability threshold and
the stars indicate where on the curve that threshold falls.

Mosaic Data Science White Paper 4

At this point, we’ve established a notion of fairness, a
way to measure it, requirements for what measurements
are acceptable, and a way to address unacceptable
measurements. But how do we make sure the
measurements are consistently run for every model?
What is the process for reviewing these measurements
when the fairness of a model comes into question?
How do we prevent a model that does not meet these
requirements from adversely impacting our client or
their prospective clients (the loan applicants)? How do
we know whether a model continues to meet these
requirements after it’s been deployed? These are all
questions MLOps can help answer. Next, we will explore
how continuous model delivery can integrate fairness
testing and requirements into the deployment pipeline,
and how production model monitoring can alert users
about potential issues in a deployed model.

CONTINUOUS MODEL DELIVERY

Continuous model delivery is the machine learning
equivalent of continuous integration and delivery3 (often
referred to as CICD). CICD is the practice of automating
all the operational tasks required to build and deploy an
application. It treats the deployment of the application
as a part of the application, including automation of the
application deployment in the source code, right next
to the core application logic. Continuous model delivery
includes everything from the environment configuration
(e.g., downloading and installing python packages) to
launching the application itself.

Furthermore, this approach eliminates the gap between
development and operations by using source code as the
trigger for the deployment. If any test fails, so does the pipeline,
preventing flawed code or flawed models from reaching the
users. As soon as a code change is published, the automated
build process begins. This includes everything from setting up the
servers and running the application to testing and QA, making
sure that every change is tested.

This coupling of development and operations encourages
frequent releases, promotes traceability, and reduces risk of
operational errors. The trade-off here is between the complexity
of developing the application and the complexity of operating
it. While it may be more complex to build this automation of
operations into the application, it is easy to isolate end users from
that complexity and the “extra” work in setting up automation will
ultimately produce an application that is both higher quality and
easier to maintain over the long term.

As applied to machine learning applications, continuous model
delivery involves automating the training, evaluation, and
deployment of the model. The model is the crucial component
of the machine learning application and with it comes additional
complications that aren’t seen in typical software applications.
While the performance of typical software applications only
depends on code, ML applications depend on both code and data.

ML applications are more reliant on testing than other
applications. If you’re a data scientist, you know by experience
that just as much, if not more, of your time is spent evaluating
your model as training it. Another common scenario is when a
trained model may be operationally fine, passing all unit tests, but

Mosaic Data Science White Paper 5

https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment

may not meet statistical quality expectations concerning
accuracy, fairness, or other performance metrics, which
are measured on large data sets and thus are highly
dependent on the distribution of the input data.

Data scientists invest so much time into ensuring the
quality of the model because model quality is crucial
to the success of the application. Integrating the often-
complex quality testing into the automated application
delivery makes a lot of sense in a machine learning
context. Implementing the continuous model delivery
framework provides an easy-to-manage “paper”
trail from a running application back to training and
evaluation metrics and ultimately back to code, data, and
parameters used for training.

PIPELINE IMPLEMENTATION

When implementing this kind of system, we believe that
it is crucial to plumb the system through as soon as there
is consensus that a model should be deployed, even if the
model initially deployed is just a placeholder or heuristic.
The sooner you have the deployment automated, the
less time you need to spend on manual deployment.
More important, though, this approach reduces time to
value. Getting the ML application deployed earlier allows
stakeholders of other systems that may begin to rely on
your model to start figuring out how their application
will work with your model outputs. This enables earlier
feedback and a greater likelihood of buy-in from
application users.

For the business case we’re exploring, we will be deploying the
lending risk prediction model as an HTTP API implemented in
Flask. Our model is trained and evaluated on a designated VM.
This is crucial to the use case because sometimes models must
be trained on specialized hardware, such as GPUs. We are using
an additional tool called MLflow to help with model management.
MLflow acts as a broker for the models, helping manage different
versions of models, record the performance metrics they
produced during training, and provide traceability back to the
parameters and code that were used to train them. We use a
Jenkins pipeline to orchestrate all the steps that are required to
train, evaluate, and deploy the model.

The Jenkins pipeline automates all the operational tasks. The
pipeline is set up as a script of steps that need to be performed to
deploy the model. Jenkins can both run these pipelines and keep
track of their progress and results. Jenkins monitors a branch of
the source control repository, and when a change is committed
to that branch, a pipeline run is launched. A data scientist only
has to commit the code to the production branch and allow the
automation to do the rest.

The pipeline run proceeds in multiple stages. The first is to train
the model. Jenkins connects to the training server via SSH and
receives the code that was updated. It prepares the environment
by installing new packages managed in the conda environment

Mosaic Data Science White Paper 6

file. Then, using command line scripts, the pipeline runs the
training and evaluation developed by the data scientist. In this
case, the training code has been instrumented with the MLflow
API to log the parameters and evaluation metrics of each run
to the MLflow server4. Artifacts of the model training run, most
importantly the trained model itself, are archived in a cloud
storage MLflow artifact store where they can be easily accessed
for further deployment or evaluation.

The next stage is to deploy the model to the development
environment. The Jenkins pipeline proceeds to connect to this
server via SSH, download the model service code and prepare
the python environment. At this point, it runs the model service
API code. The model service code is configured to connect the
MLflow server and pull down the model. MLflow in this situation
is analogous to a PyPi server, where you can download different
versions of a python package and install them; in this case a
model is installed instead of a package.

At this point, the model has been fully deployed in an isolated
development environment. This allows us to get a full preview of
what the model would look like in production. But before we go
there, it is time to test. Now we perform our unit tests, integration
tests, and performance requirement tests. Integration tests go
a step further than testing an application itself in that they test
how an application interacts with others in the system, essentially
making sure your application integrates with others before it hits
prime time (the production environment).

The model-training run initiated by Jenkins will evaluate the model
by asking it to make predictions on a “test” data set that was
not used during training. Results of this evaluation are logged
in MLflow, and we can simply check out the metrics using the
MLflow API and compare them to our requirements. This fits

really nicely into a unit test framework such as xUnit. This
automated testing stage is our opportunity to enforce the
requirements that an application must meet before it can
be deployed to our users. This includes implementing the
Equal Opportunity fairness requirement.

If the application passess the automated tests, there is one
last stage before the model is deployed to production: a
manual approval stage. In this stage, Jenkins automatically
emails specified data scientists and business leaders and
waits for them to approve the deployment to production.
At this stage, the approvers have everything they should
need to make their decision. All the training details are
recorded in MLflow, the test results have been published,
and the approvers can access and interrogate a running
instance of the model service. At Mosaic, we believe it
is important to keep a human in the loop for this final
approval stage.

After approval, the pipeline proceeds to deploy the
application to production. This stage is essentially the same
as model deployment to the development environment
except that the configuration is set so that the application
is deployed into the user-facing environment, where it can
be used during business operations.

To recap, we have automated the deployment process,
which (1) ensures consistent and automatic reviews of the
ML application that will ultimately reach business users
and (2) frees up data scientists to spend more time on
innovative machine learning solutions and less on delivery.
But what happens once the application is in production?
Just as much can go wrong in production as deployment…
can MLOps help with this?

Mosaic Data Science White Paper 7

https://mds-wpstg/2020/10/16/mlflow-mlops-tipsand-tricks-blog/

One of the fundamental assumptions one makes when
developing and deploying machine learning applications
is that the data that is produced in the production
environment is similar to the training data and the
environment that produced it. This is an unfortunately
brittle assumption. Events can have large and complex
impacts on data-producing systems that may ultimately
degrade the performance of machine learning models.
For example, you might be able to imagine how a global
pandemic could break some assumptions a model
inherited from its training data. An ML model itself might
start changing the data-producing system when it gets
deployed! Unfortunately, while MLOps itself doesn’t have
any good answers for how to address these issues, it can
help proactively detect them.

The solution we propose is called production model
monitoring and alerting. Monitoring and Alerting is a
DevOps practice of instrumenting applications to provide
a transparent log of everything the application does and
monitoring this log for any activity that the developers
would not expect to see. We see this as a useful tool for
machine learning applications as well.

Data Drift describes the phenomenon when data the
model is seeing becomes different from data that it
was trained on. We see data drift detection as a key use
case for model monitoring and alerting. We essentially
instrument the model service to log all of its predictions

and inputs. Then on a regular basis, we perform statistical
tests to compare the latest data to the data the model
was trained on. If any changes are detected, the system
will alert relevant parties (such as an on-call data scientist)
and trigger the model service itself to begin performing
failover processing.

Regardless of the metric, the models are initially trained
with only a random subset of historical data and
validated against a separate subset of data. This process
of cross validation is repeated multiple times to ensure
that the algorithm and parameter setting selections
are repeatable and not biased by the chance selection
of training sets. The final model is trained with all the
relevant historical data (egregious outliers are removed).

PRODUCTION MONITORING AND ALERTING

Mosaic Data Science White Paper 8

DASHBOARD DEVELOPMENT

The model dashboard is a persistent way to visualize the results of
the monitoring workflow. The dashboard is split into three panels.
The first panel focuses on traditional monitoring metrics such as
the number of requests the service has received, the number of
errors it produced, and the number of positive predictions that
were returned. This panel provides a high-level overview of the
operations and performance of the server.

The next panel shows the metrics for testing drift in the inputs
to the model. The goal of this test is to determine whether the
features that are being scored in production follow the same
distribution that they did in the training data. The nature of the
feature determines what test should be used. The Kolmogorov-
Smirnov Test5 is used for continuous/numeric features. Kullback-
Leibler divergence6 is used for discrete/categorical features. These
metrics are compared to a predefined threshold for testing.

The last panel focuses on the output of the model. In
our business case, we won’t know how many loans are
repaid until the terms of the loans are complete, so we
are unable to directly monitor the predictive accuracy of
the model and the fairness test we developed. However,
there are some closely related quantities that we can
monitor to give us a good idea about our metrics of
interest. We can perform a test to see if the proportion
of positive predictions in the production data is the same
as the proportion of positive predictions in the training
data. We do so by estimating a confidence interval for
the proportion of positive predictions in the training set
assuming a sample of the same size as the production
data requests. We can perform this test per the ethnic
group of the loan applicants. If we see a change in the
positive prediction proportion, it may be evidence that
the false positive rates have changed as well.

Mosaic Data Science White Paper 9

https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test#:~:text=In%20statistics%2C%20the%20Kolmogorov%E2%80%93Smirnov,test)%2C%20or%20to%20compare%20two
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test#:~:text=In%20statistics%2C%20the%20Kolmogorov%E2%80%93Smirnov,test)%2C%20or%20to%20compare%20two
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

Endnotes

1. https://devops.com/

2. https://arxiv.org/abs/1610.02413

3. https://www.atlassian.com/continuous-delivery/principles/continuous-
integration-vs-delivery-vs-deployment

4. https://mds-wpstg/2020/10/16/mlflow-mlops-tipsand-tricks-blog/

5. https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_
test#:~:text=In%20statistics%2C%20the%20
Kolmogorov%E2%80%93Smirnov,test)%2C%20or%20to%20compare%20two

6. https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

CONCLUSION

This white paper used a simulated business case to demonstrate how
MLOps can support machine learning solutions with built-in quality
assurance and fairness testing. There are many other use cases and ethical
frameworks that can be supported by MLOps.

At Mosaic Data Science, we build machine learning solutions on two
foundational pillars. First, we take a design-oriented approach to frame
the problem and develop the right machine learning solution to address
it. Second, we take great care in integrating the machine learning solution
into the business process with an eye for sustainability and maintainability.

We believe that building machine learning solutions requires focusing on
operations and delivery as much as the development of the algorithm
itself. Our holistic approach differentiates us from others in the market
because we focus on developing custom applications that fit your
ecosystem rather than trying to shoehorn prebuilt solutions that ultimately
don’t integrate into your workflow. If you’re interested in seeing a live
demonstration of the systems described in this white paper and further
exploring how we can help with your business case, please contact us.

Mosaic Data Science White Paper 10

https://www.mosaicdatascience.com/contact-us/
https://devops.com/
https://arxiv.org/abs/1610.02413
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://www.atlassian.com/continuous-delivery/principles/continuous-integration-vs-delivery-vs-deployment
https://mds-wpstg/2020/10/16/mlflow-mlops-tipsand-tricks-blog/
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test#:~:text=In%20statistics%2C%20the%20Kolmogorov%E2%80%93Smirnov,test)%2C%20or%20to%20compare%20two
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test#:~:text=In%20statistics%2C%20the%20Kolmogorov%E2%80%93Smirnov,test)%2C%20or%20to%20compare%20two
https://en.wikipedia.org/wiki/Kolmogorov%E2%80%93Smirnov_test#:~:text=In%20statistics%2C%20the%20Kolmogorov%E2%80%93Smirnov,test)%2C%20or%20to%20compare%20two
https://en.wikipedia.org/wiki/Kullback%E2%80%93Leibler_divergence

