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Successfully developing machine learning tools to provide value 
in a business environment requires much more than algorithmic 
knowledge and tuning. Machine learning cannot provide value in a 
vacuum. A simple heuristic deployed in the right place can provide 
more value than a complex model effectively “mothballed” in an 
offline setting. At Mosaic Data Science, we take a holistic approach 
to developing machine learning-enabled solutions. This involves 
focusing on how the model will ultimately provide value to the 
business as much or sometimes more than focusing on building 
the most accurate model.

This focus on delivering and integrating machine learning models 
is often referred to as MLOps,  short for machine learning 
operations, extending the practice of DevOps1 in software 
development. While there are some adjustments that must be 
made in that extension, we believe that many of the tenets and 
justifications used in DevOps readily apply to MLOps.

In this white paper, we will outline the development of a machine 
learning application using MLOps practices. We focus on two main 
features:

1. Continuous model delivery, and

2. Production model monitoring and alerting.

We will highlight how these practices reduce operational 
complexity and time to value, allow for more agile development, 
and integrate quality assurance into the deployment process.  This 
paper will explore how MLOps provides natural opportunities 
for fair and ethical machine learning practices that can be 
implemented, demonstrated, and even audited if necessary.

BUSINESS OBJECTIVES

For the purposes of this white paper, we simulated a 
business use case that required an ML application. Our 
simulated client is a financial services company that 
provides lending services. Providing this service typically 
involves reviewing applicants’ financial history and the 
prospective loan details (e.g., amount, purpose, terms), 
then using that information to decide on whether to grant 
loans to each individual applicant. Ultimately, applicants 
who receive loans may or may not pay the loans back. 
The objective, of course, is to increase overall profits by 
reducing instances where the loan is not repaid. The loan 
approval process is typically manual and based upon 
human heuristics or other methods.

BUSINESS PROBLEM | INCREASE IN 
RATE OF UNPAID LOANS

In this demonstration scenario, an unsatisfactory fraction 
of approved loans are not being repaid, so the lender 
would like to add a second layer of targeted review of 
approved but relatively high-risk loans before they are 
finalized. Having provided lending services for some 
time, the business has accrued a large data set of loans 
they have approved, creditor application details, and the 
ultimate outcome of the loan.

The business wishes to develop a machine learning 
system to determine which loans are high-risk and thus 
selected for a secondary review. This system will be used 
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 Loan process review with machine learning

to review all approved loans, and its prediction will be used to 
automatically approve applications that are predicted to be low 
risk. All applications that are predicted to be high-risk will undergo 
a secondary manual review.

In financial services and other high-stakes settings, issues 
of fairness and justice are of particular interest in general. 
These services are under scrutiny by the public and 
regulators, and the same scrutiny is applied to ML models 
in this space. The business in the demonstration is keen 
to develop and deploy a “fair” ML model that reflects 
its corporate culture and values and will stand up to 
potential government regulations and associated audits.

Fairness is multifaceted, highly contextual, and use-
case specific. It may not be possible to simultaneously 
accomplish all relevant notions of fairness. Furthermore, 
increases in fairness may be offset by decreases in 
predictive accuracy or other quality metrics, so priorities 
must be evaluated, and value judgments are typically 
required. Across the board, the fairness of an ML model is 
not proven, but rather constantly measured, with scrutiny 
and adjustments provided based on measurement 
results. We will demonstrate how this constant 
measurement can naturally be built into an MLOps 
pipeline.

ETHICAL ML MODEL FRAMEWORKS

After reviewing the business problem and proposed 
solution, we recommended that the business evaluate 
the model using the Equal Opportunity2 framework of 
fairness. This popular and well-studied notion of fairness 
focuses on assessing whether the model is less accurate 
when making predictions for any protected sub-group 
than for other sub-groups. For this assessment, Mosaic 

The business anticipates that the secondary review of approved 
but predicted high-risk loans will be conducted at a relatively high 
level and will lead to most of those loans being rejected, largely 
because the marginal cost associated with approving a loan that 
ends up failing is generally much higher than the marginal cost 
of failing to approve a loan that would end up being repaid. This 
situation makes the business much more tolerant of false-positive 
predictions, i.e., an incorrect classification of a loan as high-risk, 
than they are of false-negative predictions, i.e., an incorrect 
classification of a loan as low-risk. In fact, data science efforts on 
this business case have identified a 5:1 false-negative to false-
positive cost ratio for the ML model. This cost ratio enables us 
to select a low- vs. high-risk threshold on the model’s predicted 
probability output.

Mosaic Data Science White Paper 3

https://arxiv.org/abs/1610.02413


recommended using the false-positive rate as the key error metric. 
This is because the positive prediction (a loan classified as high-
risk) is punitive to the applicant. If the model incorrectly classifies 
an applicant’s loan as high-risk, it will likely result in an unfair 
rejection of the applicant’s loan. In the demonstration scenario, 
the business is mostly concerned with being fair with respect to 
applicant ethnicity.

To evaluate our loan approval ML model using the Equal 
Opportunity framework of fairness, we need to compare the false-
positive rates for each ethnic group. We do so by calculating the 
absolute differences between all the groups’ false-positive rates. 
If the largest of those differences is too far from zero, then the 
model fails to achieve Equal Opportunity fairness, a situation that 
merits further attention and potential intervention.

Assessing equal opportunity using false positive rates

Fortunately, there is a relatively straightforward 
way to adjust a trained ML model to ensure 
that it satisfies the Equal Opportunity notion of 
fairness. We can ensure that each group achieves 
the same false-positive rate by adjusting the 
low- vs. high-risk predicted probability threshold 
per ethnic group to hit the specified rate. For 
instance, if loans from a certain ethnic group 
are being flagged as high-risk more often than 
loans from other ethnic groups, we can change 
the probability threshold in the model for the 
particular ethnic group, adjusting it until we 
reach equivalent false-positive rates. We then 
search over candidate false-positive rates to 
find the one that minimizes the 5:1 cost ratio 
described earlier. This approach maximizes the 
lender’s profits within a fairness constraint. The 
figure below demonstrates how setting group-
based probability thresholds can ensure uniform 
false-positive rates.

This graphic displays each ethnic group’s ROC curve. The 
legend denotes the selected probability threshold and 
the stars indicate where on the curve that threshold falls.
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At this point, we’ve established a notion of fairness, a 
way to measure it, requirements for what measurements 
are acceptable, and a way to address unacceptable 
measurements. But how do we make sure the 
measurements are consistently run for every model? 
What is the process for reviewing these measurements 
when the fairness of a model comes into question? 
How do we prevent a model that does not meet these 
requirements from adversely impacting our client or 
their prospective clients (the loan applicants)? How do 
we know whether a model continues to meet these 
requirements after it’s been deployed? These are all 
questions MLOps can help answer. Next, we will explore 
how continuous model delivery can integrate fairness 
testing and requirements into the deployment pipeline, 
and how production model monitoring can alert users 
about potential issues in a deployed model.

CONTINUOUS MODEL DELIVERY

Continuous model delivery is the machine learning 
equivalent of continuous integration and delivery3 (often 
referred to as CICD). CICD is the practice of automating 
all the operational tasks required to build and deploy an 
application. It treats the deployment of the application 
as a part of the application, including automation of the 
application deployment in the source code, right next 
to the core application logic. Continuous model delivery 
includes everything from the environment configuration 
(e.g., downloading and installing python packages) to 
launching the application itself.

Furthermore, this approach eliminates the gap between 
development and operations by using source code as the 
trigger for the deployment. If any test fails, so does the pipeline, 
preventing flawed code or flawed models from reaching the 
users. As soon as a code change is published, the automated 
build process begins. This includes everything from setting up the 
servers and running the application to testing and QA, making 
sure that every change is tested.

This coupling of development and operations encourages 
frequent releases, promotes traceability, and reduces risk of 
operational errors. The trade-off here is between the complexity 
of developing the application and the complexity of operating 
it. While it may be more complex to build this automation of 
operations into the application, it is easy to isolate end users from 
that complexity and the “extra” work in setting up automation will 
ultimately produce an application that is both higher quality and 
easier to maintain over the long term.

As applied to machine learning applications, continuous model 
delivery involves automating the training, evaluation, and 
deployment of the model. The model is the crucial component 
of the machine learning application and with it comes additional 
complications that aren’t seen in typical software applications. 
While the performance of typical software applications only 
depends on code, ML applications depend on both code and data.

ML applications are more reliant on testing than other 
applications. If you’re a data scientist, you know by experience 
that just as much, if not more, of your time is spent evaluating 
your model as training it. Another common scenario is when a 
trained model may be operationally fine, passing all unit tests, but 
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may not meet statistical quality expectations concerning 
accuracy, fairness, or other performance metrics, which 
are measured on large data sets and thus are highly 
dependent on the distribution of the input data.

Data scientists invest so much time into ensuring the 
quality of the model because model quality is crucial 
to the success of the application. Integrating the often-
complex quality testing into the automated application 
delivery makes a lot of sense in a machine learning 
context. Implementing the continuous model delivery 
framework provides an easy-to-manage “paper” 
trail from a running application back to training and 
evaluation metrics and ultimately back to code, data, and 
parameters used for training.

PIPELINE IMPLEMENTATION

When implementing this kind of system, we believe that 
it is crucial to plumb the system through as soon as there 
is consensus that a model should be deployed, even if the 
model initially deployed is just a placeholder or heuristic. 
The sooner you have the deployment automated, the 
less time you need to spend on manual deployment. 
More important, though, this approach reduces time to 
value. Getting the ML application deployed earlier allows 
stakeholders of other systems that may begin to rely on 
your model to start figuring out how their application 
will work with your model outputs. This enables earlier 
feedback and a greater likelihood of buy-in from 
application users.

For the business case we’re exploring, we will be deploying the 
lending risk prediction model as an HTTP API implemented in 
Flask. Our model is trained and evaluated on a designated VM. 
This is crucial to the use case because sometimes models must 
be trained on  specialized hardware, such as GPUs. We are using 
an additional tool called MLflow to help with model management. 
MLflow acts as a broker for the models, helping manage different 
versions of models, record the performance metrics they 
produced during training, and provide traceability back to the 
parameters and code that were used to train them. We use a 
Jenkins pipeline to orchestrate all the steps that are required to 
train, evaluate, and deploy the model.

The Jenkins pipeline automates all the operational tasks. The 
pipeline is set up as a script of steps that need to be performed to 
deploy the model. Jenkins can both run these pipelines and keep 
track of their progress and results. Jenkins monitors a branch of 
the source control repository, and when a change is committed 
to that branch, a pipeline run is launched. A data scientist only 
has to commit the code to the production branch and allow the 
automation to do the rest.

The pipeline run proceeds in multiple stages. The first is to train 
the model. Jenkins connects to the training server via SSH and 
receives the code that was updated. It prepares the environment 
by installing new packages managed in the conda environment 
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file. Then, using command line scripts, the pipeline runs the 
training and evaluation developed by the data scientist. In this 
case, the training code has been instrumented with the MLflow 
API to  log the parameters and evaluation metrics of each run 
to the MLflow server4. Artifacts of the model training run, most 
importantly the trained model itself, are archived in a cloud 
storage MLflow artifact store where they can be easily accessed 
for further deployment or evaluation. 

The next stage is to deploy the model to the development 
environment. The Jenkins pipeline proceeds to connect to this 
server via SSH, download the model service code and prepare 
the python environment. At this point, it runs the model service 
API code. The model service code is configured to connect the 
MLflow server and pull down the model. MLflow in this situation 
is analogous to a PyPi server, where you can download different 
versions of a python package and install them; in this case a 
model is installed instead of a package.

At this point, the model has been fully deployed in an isolated 
development environment. This allows us to get a full preview of 
what the model would look like in production. But before we go 
there, it is time to test. Now we perform our unit tests, integration 
tests, and performance requirement tests. Integration tests go 
a step further than testing an application itself in that they test 
how an application interacts with others in the system, essentially 
making sure your application integrates with others before it hits 
prime time (the production environment).

The model-training run initiated by Jenkins will evaluate the model 
by asking it to make predictions on a “test” data set that was 
not used during training. Results of this evaluation are logged 
in MLflow, and we can simply check out the metrics using the 
MLflow API and compare them to our requirements. This fits 

really nicely into a unit test framework such as xUnit. This 
automated testing stage is our opportunity to enforce the 
requirements that an application must meet before it can 
be deployed to our users. This includes implementing the 
Equal Opportunity fairness requirement.

If the application passess the automated tests, there is one 
last stage before the model is deployed to production: a 
manual approval stage. In this stage, Jenkins automatically 
emails specified data scientists and business leaders and 
waits for them to approve the deployment to production. 
At this stage, the approvers have everything they should 
need to make their decision. All the training details are 
recorded in MLflow, the test results have been published, 
and the approvers can access and interrogate a running 
instance of the model service. At Mosaic, we believe it 
is important to keep a human in the loop for this final 
approval stage.

After approval, the pipeline proceeds to deploy the 
application to production. This stage is essentially the same 
as model deployment to the development environment 
except that the configuration is set so that the application 
is deployed into the user-facing environment, where it can 
be used during business operations.

To recap, we have automated the deployment process, 
which (1) ensures consistent and automatic reviews of the 
ML application that will ultimately reach business users 
and (2) frees up data scientists to spend more time on 
innovative machine learning solutions and less on delivery. 
But what happens once the application is in production? 
Just as much can go wrong in production as deployment…
can MLOps help with this?
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One of the fundamental assumptions one makes when 
developing and deploying machine learning applications 
is that the data that is produced in the production 
environment is similar to the training data and the 
environment that produced it. This is an unfortunately 
brittle assumption. Events can have large and complex 
impacts on data-producing systems that may ultimately 
degrade the performance of machine learning models. 
For example, you might be able to imagine how a global 
pandemic could break some assumptions a model 
inherited from its training data. An ML model itself might 
start changing the data-producing system when it gets 
deployed! Unfortunately, while MLOps itself doesn’t have 
any good answers for how to address these issues, it can 
help proactively detect them.

The solution we propose is called production model 
monitoring and alerting. Monitoring and Alerting is a 
DevOps practice of instrumenting applications to provide 
a transparent log of everything the application does and 
monitoring this log for any activity that the developers 
would not expect to see. We see this as a useful tool for 
machine learning applications as well.

Data Drift describes the phenomenon when data the 
model is seeing becomes different from data that it 
was trained on. We see data drift detection as a key use 
case for model monitoring and alerting. We essentially 
instrument the model service to log all of its predictions 

and inputs. Then on a regular basis, we perform statistical 
tests to compare the latest data to the data the model 
was trained on. If any changes are detected, the system 
will alert relevant parties (such as an on-call data scientist) 
and trigger the model service itself to begin performing 
failover processing.

Regardless of the metric, the models are initially trained 
with only a random subset of historical data and 
validated against a separate subset of data. This process 
of cross validation is repeated multiple times to ensure 
that the algorithm and parameter setting selections 
are repeatable and not biased by the chance selection 
of training sets. The final model is trained with all the 
relevant historical data (egregious outliers are removed).

PRODUCTION MONITORING AND ALERTING
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DASHBOARD DEVELOPMENT

The model dashboard is a persistent way to visualize the results of 
the monitoring workflow. The dashboard is split into three panels. 
The first panel focuses on traditional monitoring metrics such as 
the number of requests the service has received, the number of 
errors it produced, and the number of positive predictions that 
were returned. This panel provides a high-level overview of the 
operations and performance of the server.

The next panel shows the metrics for testing drift in the inputs 
to the model. The goal of this test is to determine whether the 
features that are being scored in production follow the same 
distribution that they did in the training data. The nature of the 
feature determines what test should be used. The Kolmogorov-
Smirnov Test5 is used for continuous/numeric features. Kullback-
Leibler divergence6 is used for discrete/categorical features. These 
metrics are compared to a predefined threshold for testing.

The last panel focuses on the output of the model. In 
our business case, we won’t know how many loans are 
repaid until the terms of the loans are complete, so we 
are unable to directly monitor the predictive accuracy of 
the model and the fairness test we developed. However, 
there are some closely related quantities that we can 
monitor to give us a good idea about our metrics of 
interest. We can perform a test to see if the proportion 
of positive predictions in the production data is the same 
as the proportion of positive predictions in the training 
data. We do so by estimating a confidence interval for 
the proportion of positive predictions in the training set 
assuming a sample of the same size as the production 
data requests. We can perform this test per the ethnic 
group of the loan applicants. If we see a change in the 
positive prediction proportion, it may be evidence that 
the false positive rates have changed as well.
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CONCLUSION

This white paper used a simulated business case to demonstrate how 
MLOps can support machine learning solutions with built-in quality 
assurance and fairness testing. There are many other use cases and ethical 
frameworks that can be supported by MLOps.

At Mosaic Data Science, we build machine learning solutions on two 
foundational pillars. First, we take a design-oriented approach to frame 
the problem and develop the right machine learning solution to address 
it. Second, we take great care in integrating the machine learning solution 
into the business process with an eye for sustainability and maintainability.

We believe that building machine learning solutions requires focusing on 
operations and delivery as much as the development of the algorithm 
itself. Our holistic approach differentiates us from others in the market 
because we focus on developing custom applications that fit your 
ecosystem rather than trying to shoehorn prebuilt solutions that ultimately 
don’t integrate into your workflow. If you’re interested in seeing a live 
demonstration of the systems described in this white paper and further 
exploring how we can help with your business case, please contact us.
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